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Abstract. Second-order vibronic reduction factors for spin—orbit coupling are derived for
orbital triplet systems using the recently derived symmetry-related method. This involves
the calculation of oscilator overlaps which are projected out of the cubic vibronic states.
Details are presented in the weak coupling timit for T & e, T & t, and T & (& + t,) vibronic
systems and in the strong coupling limit for T @ e and T @ t, systems. The analyses are shown
to be in agreement with those obtained by other methods. The discussion is then extended
to the calculation of the off-diagonal matrix element between the vibronic T, ground state
and the A, inversion level of a T, ion for the T & t, system using symmetry-adapted vibronic
states. The effects of anisotropy in the problems studied are also briefly discussed.,

1. Introduction

In a very recent paper, Polinger et af (1991, to be referred to as I) developed a general
theory for the derivation of second-order vibronic or Jahn~Teller (JT) reduction factors
associated with a purely electronic perturbation V acting within a vibronic system. The
analysis was based entirely on symmetry grounds. It was shown that the reduction factors
could be deduced from the evaluation of the sums of various oscillator overlaps. Explicit
expressions were derived for both those second-order reduction factors K| ﬁ] (T, xT)),
that act entirely within the ground degenerate state of the system, and for the off-
diagonal second-order reduction factors K2(I'|[; X T,IQ), which act between the
ground state of symmetry I' and the inversion level of symmetry &, I', and I, denote the
symmetries of the two parts of V involved in the calculation. The formalism is such that
T, and I'; can refer to the same or different parts of the perturbation V.

These second-order terms become particularly important in many cases of strong
coupling especially in the case of orbital triplets (described by the isomorphic orbital
angular momentum operator = 1) as they can then dominate the first-order terms
which involve the first-order reduction factor K(M). The general principles are discussed
in the books by Perlin and Wagner (1984) and Bersuker and Polinger (1989, to be
referred to as Bp) but further details are given in I which also gives references to other
work.

A few applications of the method were given in I using spin—orbit coupling A /- § as
an example, in which both I'; and T, transform as T,. In this paper we give further
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examples of the method taking spin—orbit coupling as the example once more. The
formulae quoted in I will be used to derive values for the various (diagonal) reduction
factors in both the weak coupling and strong coupling limits. This is followed by a
calculation of the off-diagonal reduction factor for orbital triplets coupled to t, modes,
normally referred to as the T & t, JT system.

2. Mathematical background for orbital triplets

We consider an isolated orbital triplet which is strongly coupled to the vibrations of its
surroundings. The electronic orbital states may be written in the form qiry(r) [Ty);
the e1genstates of the system are vibronic states which are written in the form
‘I—‘f.y | NTy). The labels I'y give the irreducible representation (IR} and the component
of the state while N labels the repeated IR of the vibronic state such that their energies
E}.N) increase with increasing N. In I, vibronic eigenstates were written as sums of
products of electronic and vibrational states by using a Clebsch-Gordan convolution
form:

|NT) = E [Z0)|M(T) AL} (ZoALITy) 2.1)

where (ZgAA|T'y) are the Clebsch-Gordan coefficients and [N(T') Ad} = xN(Q) are
functions of the nuclear coordinates Q and thus represent the phonon states.

The perturbation V (=Al « S} can cause a splitting of the ground vibronic state {0I'y)
in first order which can be described by the Hamiltonian K(T,} A{ - S. In second order,
the additional splitting can be described by the effective Hamiltonian

INZo){NZo|
%%V @ — £

with V = Al - §. #® dependsupon the nuclear as well as the space coordinates, However,
as the contributions from the summation in (2.2) form a scalar, the symmetry of #®
depends only on the symmetry within V X V. This means that the effective Hamiltonian
to describe the vibronic system can be obtained from the purely electronic Hamiltonian
by multiplying (V x V) by K&(I', x I')) with T, = I, = T, where (I, equation (2.17))

14 2.2)

. —-1y0[r rr M
K@, x Ty =~ 5 -y T My 23)
r ©r T
with
= ST ADSHTAD/(ED - ED) (2.4)
and where

Sv(EAQ) = Z -1y 0(2)0] |N(A)d>}[ @.5)

2 A (IJ]
In the above, the oscillator overlap integrals are {0(Q }®] | N(A)®d} while the remaining
terms give numerical factors. Alsothe 61 symbols are written with large square brackets,
the fictitious angular momentum operator as j(I') and the dimension of a representation
with small square brackets (see, e.g., Griffiths 1962).
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The second-order spin—orbit coupling can be written as an effective Hamiltonian in
the form

Yo = A2 ME KQLG SR, (2.6)
H

where Lﬁl and § ﬁ:‘ are the second-order orbit and spin operators respectively, which
transform as My and where Kﬁ) = Kﬁ)(Tl x Ty)withM = A, E, T,, T,. Itis necessary
to equate %@ with ¥,¢. This is readily achieved by expressing the K{? as sums of terms
involving R,(T,) with A = A, E, T, T;, where

RA(Ty) = 2 ¥ 2.7)
N
Explicit expressions for the R,(T;) are given in (I; 2.28) and the corresponding
expressions for K2 in (I;2.27).
In a similar way, the off-diagonal second-order spin—orbit reduction factors that are

associated with the coupling between the ground vibronic state I' and the vibronic
inversion level I" are given by (I; 2.30):

T, T, M |
k@) [ ] =umiey 2 e

(5 L e S ko

Tl Tl
I & M .
t[r 1 A CDOSHE) 9
where
K¥(E) = Sp(T AD)SH(TYAQY(ES - E). (2.9)

It is not straightforward to apply these general results to real systems (except to T® ¢)
due to the difficulties in obtaining orthogonal sets of symmetry-adapted states and
evaluating the relevant overlaps. However, it is possible 1o undertake very accurate
analytical calculations in the limits of very strong and very weak coupling. Such cal-
culations are useful because they enable both the magnitude and form of the dependence
of the reduction factors on the coupling parameter(s) and frequencies to be determined.
They also give insight into the underlying physical mechanisms involved in their deter-
mination and give a guide to the accuracy of approximate calculations in finite coupling.
These limiting cases will therefore be considered first of all followed by a calculation of
the off-diagonal reduction factor for T & t, systems.

3. The limiting case of weak vibronic coupling

In the limit of infinitely small vibronic coupling, the overlap integrals {O(T)M| |N(T,)M}
vanish for N # 0, due to orthogonality of the oscillator states, which are centred at the
origin of Q-space. Therefore, an expansion of these overlap integrals in the form of a
power series in V' is appropriate. As this overlap is squared in the expression given in
(2.4), it follows that, to obtain K j) to second order with respect to V, it is necessary to
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take the states |[N(T,)AA} to first order in V only. Also, as the coupling is weak, it is
appropriate to exclude bilinear and higher-order vibronic coupling terms from the
calculation. We consider therefore the lngar vibronic coupling as a perturbation on the
geperal mixed orbital-oscillator state |0(T )y}

For the T & t, system, the vibronic coupling admixes states differing by one in the
oscillator occupation number such that the perturbed state can be written as

|0(T)TY} = (08 5a, — [Ve/(Rmw?)'?] 1) r, 61y G.D

where |0} is the osciilator ground state (000}, and {1y} is either |100) or |010} or |001} and
Vris the ion-lattice coupling constant. Similarly, the excited state can be written as

1Ay} = 138 rr, 8 S iam i xy + [Vi/(Rm3) 2] |00614,0ar,  (3.2)

where 8(A, T, x T) = 1if A € ([, X ') and 0 otherwise. Substituting (3.1) and (3.2)
into (I; 2.28) and noting that terms in which N 3 1 do not contribute, we obtain

Ry, =0 Rg=3Rr, Ry =9Ry, Ry, =-Ep/(24h*w}) (3.3)
where Ey, is the IT energy. It follows from (I; 2.27) that, in the weak coupling limit,
K =2K® = 2K5) = ~49E /At w}) KY) = ~H(15Ep/h wh). (3.4)
Results for T ® e can be obtained following the same procedures, to give

Ry =Re=0 Ry, =3Ry, = —}E; /R 0} (3.5)
and thus

K = k@ = 2k% K9 = KY) = ~1GEr /8 0l). (3.6)

These results coincide with the exact results of Ham (1965} in the limit of first-order
powers in Eq., the IT energy.

A simple analysis shows that in the case of weak vibronic coupling to both e and t,
modes (i.e. in the T® (e + t;) problem), the second-order reduction factors are sums
of the two corresponding results for T® e and T ® t,. Thus from (3.4) and (3.6} we
obtain, for example,

KD = 2B /(hoe)? + 3Er/(hoq)]. (3.7)

Inthe limit of weak coupling, the formulae developed above have enabled us to calculate
the reduction factors directly. All the results obtained are in agreement with the recent
calculations of O’Brien {1990) with the k? of O’Brien equal to (3E1)/2{hw)?, with E ¢
the appropriate JT energy and with wg = wr = w. (Note that the references in O’Brien
(1990) to ‘Polinger (1989, 1990), private communication’ are to this paper.)

4. Strong vibronic coupling

In the very strong coupling limit, the potential energy terms are dominant. It is con-
venient then to describe the system in terms of potential energy surfaces or sheets in Q-
space, where the lower sheet contains equivalent minima. The number and symmetry
of the minima depend upon the symmetry of the vibrations used in the vibronic-coupling
Hamiitonian. The system will reside in one of these minima. Also, in this limit, the
energy gaps between lower and upper sheets are much iarger than the vibrational
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quantum (i.e. Eyr > fiwy). This means that the nuclear motion can be separated from
the electronic motion as the electrons are a fast-moving sub-system in contrast to the
much more slow-moving nuclear system. As the whole system becomes frozen in one of
the minima, the kinetic energy term can be dropped from the basic Hamiltonian (I; 2.1).
Thus the eigenvalues £{Q) of the potential operator U(r, Q) for the nuclei moving in
the mean field of the electrons are functions of the @, which can be treated as free
parameters. The corresponding adiabatic eiectronic eigenfunctions can be written as
W(r, Q) where r denotes the electronic position.

In order to proceed, it is necessary to know the transformation properties of ¥(r, )
under the symmetry group of the system. However, as this eigenfunction is explicitly a
continuous function of the nuclear space variable (, it may be necessary to take into
account Berry’s phase when some symmetry operation that describes a closed path in
()-space is considered (Ham 1987, 1990, O’Brien 1990}. This indicates that the electronic
adiabatic wavefunction of a JT system should transform according to a singlet IR of a
double or more complicated symmetry group. Unfortunately, full details of the pro-
cedure required here are not yet available. Thus it is not possible at present to take full
advantage of the symmetry arguments described above on the eigenfunctions such as
W(r, O).

In,st?sad, we will calculate the second-order vibronic reduction factors for the strong
coupling case by a direct substitution of the adiabatic vibronic states, which are written
in the form

INTy) = |¥;(r, QYPR () (4.1)
where $% are the nuclear wavefunctions associated with the electronic states ¥,. The
index m labels the repeated IRs of the vibronic states while N corresponds to a pair of
the indices i and m (i.e. N ={i, m}).

If (4.1)is substituted into the basic formulae for second-order perturbation theory,
it is necessary to evaluate matrix elements of the components (e.g. /,) of the angular
momentum between sets of the vibronic states. We then obtain

OT 7. LINT 1) = (Folr, O)LIW,(r, D)@ HO) @D (O (4.2)

To evaluate the overlap integrals (5 (@)l (Q)) in the limiting case of strong
coupling, the Frank—Condon principle (see, e.g., Herzberg 1950, Landau and Lifshitz
1977) can be used. The largest contributions are then assumed to come from ‘vertical’
tramsitions in a configuration coordinate diagram. That is, the separation between the
excited state ¢ and the ground state @) is approximately equal to the energy gap A,
between the appropriate sheets of the adiabatic potential energy surface. However, A,
must be evaluated at the same coordinate O = Oy where Qg corresponds to a minimum
_in the lower potential surface. Consequently the energy denominator £ — E® in
(2.2) can be removed from the summation over m and be replaced by the energy gap A,
where
EP — EQ” = £0(Q0) — £4Q0) = —A.. (4.3)
For the T ® t, JT system, there are four equivalent minima with A; = 3Er, (see, e.g.,
Opik and Pryce 1957). Then the energy gap A, can be taken outside the summation over
N. Also, the remaining sum over m for each sheet may be removed on account of the
completeness theorem:

2 e 2@ e(0" =80 - Q") (4.4)

for the set of adiabatic wavefunctions ¢ @.
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A similar condition of completeness applied to the adiabatic electronicstates W (r, Q)
gives

% lwi(r, Q) Wi(r, Q)| = 1 = |wolr, @)Nwolr, Q). (4.5)

Thus on substituting these results into (2.2) and using the general relation (1;2.18) while
noting that

(Wo(r; Dblwo(r, Q)) =0
we obtain the required expression for the second-ord reduction factor:

1 0T,v;|Fry(Ty X T)I0T,y;)
3B (Tyva|Fr(Ty X T)|Tyy;)

KO(T, xT)) =~ (4.6)

This result can be rewritten in the form
KE(T X Ty) = K@ = ~(1/3Em)K(T) (4.7)

where K(I') is the first-order vibronic reduction factor for the electronic operator
F(T, X Ty). First-order factors have been studied extensively by both numerical and
analytical methods (see, for example, B?). In the limit of strong vibronic coupling for
the T ® t, IT problem, K(A,) =1, K(E) = K(T,) = 0 and K(T,) = §, s0

K? = —1/3E,, K@ =g =0 K3 = —2/9Ex,. (4.8)
Thus from (1; 2.28) we obtain
Ry =0 Rg=-1/27TEy, Ry, =~—1/54Ey, Ry = ~1/162Eq,.
. The equivalent result for the off-diagonal reduction factor is given by
KO(TI(Ty X T)|A) = 1/(BV3ER). (4.9)

These results are the same as those of O’Brien (1990) with her k? = 3E4,/2. (Note that
the definition of the off-diagonal reduction factor implied in (2.8) and used subsequently
here includes the ‘normalizing’ factor (T'] | Fu(Ce X T |T) from (I; 2.29). This factor
has a value of § here. )

Even though the T ® e rrsystem isexactly solvable, it is interesting to apply the same
approach to this system. The ‘vertical’ energy gap between the potential sheets at any
one of the three values of Q¢ corresponding to the tetragonal wells is 3Ey, and the first-
order reduction factors are K(A,) = K(E) = 1, K(T,) = K(T,) = 0. Thus

KD =K = ~1/3Er, KR =kf) =0 (4.10)

which coincide with the exact results of Ham (1965). The corresponding expressions for
the R, factors are

Ry, =Rg=0 R, = Ry, = —1/54Er,. (4.11)

The problem of the strongly coupled T ® (e + t;) system when the nuclear motion is
localized in one of the six orthorhombic minima can also be treated in a similar way.
However, the calculations for this case are somewhat more complicated because, in the
orthorhombic nuclear configuration, the electronic degeneracy is completely lifted and
thus the simplifying relation (4.5) cannot be used.



Second-order spin—orbit coupling 3447

It is interesting to compare the results (4.8) with those derived from the analytic
approach of Bates and Dunn (1989) and Dunn et 2/ (1990) for the strongly coupled T ® t,
IT system. In the strong coupling limit, both the simple approach of Bates and Dunn
(1989) and the more accurate results of Dunn et o/ (1990, from equations (4.3) and (4.9))
give the result

K = -1/2Ex, KP=k@=0 K® =-1/3E,. (4.12)

These values are each 1.5 times the results given in (4.8). The origin of this difference is
the neglect of anisotropy in the analytical calculations. This point was discussed briefly
in the paper by Dunn et 4/ (1990) in relation to a comparison of revised graphs showing
the variations of the second-order reduction factors as a function of the strength of the
coupling represented by the parameter K.

To check this point, further calculations of the second-order reductien factors for
the T & t, JTsystem have been undertaken in which the oscillator frequency wy has been
replaced by w g where

W = wr{l — Z) (4.13)

where Z is a complicated function of Et, and w- defined in equation (3.5) of Dunn and
Bates (1989a, b). This is obviously not an accurate calculation but it produces the results
shown in figure 1(4). The reduction factors are plotted in the form of 4, Bg, By and C
as in Dunn er al (1990) where A = —3K$), By = K@, By = K§) and C= %K‘5 Also
included are the numerical results of O’ Brlen (1990). For comparison purposes, the
results of Dunn et af (1990) are included in figure 1(b). From these results, it is clearly
seen that our revised analytical calculations here give values for the reduction factors
that are much closer to those of O’Brien (1990). In the strong coupling limit (where K/
fiwy is much greater than 1) where w.q becomes V' (2/3)wr, the new graphs are very
close to the asymptotic limit shown by the numerical calculations. This accounts for the
factor of 1.5 mentioned above. Also, the positions of the maxima and minima along the
K axis (Where K1 = %(BETl/ﬁwT)”z) are much closer to those obtained numerically.
Thus even though anisotropy corrections have been included in an approximate way
only, the results agree more closely with those obtained by numerical methods than they
do when anisotropy is neglected (figure 1(b)). It should be noted that the maximum and
minimum values are themselves somewhat larger than those of O’Brien (1990) and that
for very small values of Xy the curves do not all point towards zero. The reason for these
discrepancies is that the states become less orthogonal as K decreases towards zero (see
Dunn et al 1990). It was found that orthogonalization reduces the sizes of the peaks
whilst making only very small changes to the peak positions. The same result will apply
here but the algebra is very lengthy, so it has not been presented here.

5. Off-diagonal reduction factcor

There have been very few calculations of the off-diagonal second-order reduction factors
for any system although O’Brien (1990) calculates the asymptotic limit for T®t, as
mentioned previously. Such factors become significant whenever the inversion splitting
becomes comparable in size with the second-order terms from a perturbation such as
spin—-orbit coupling. It is appropriate therefore to carry out a calculation of such off-
diagonal terms using the theory described in I. It also illustrates in detail the procedures
involved for the general case.
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Figure 1. (a) The reduction factors A, B, By and C calculated after anisotropy has been
included using the approximate formula for @, as given in equation (4.13}. Also included
are the numerical results (denoted by ©, O, A and # respectively} obtained by O’Brien
(1990). (b) The original calculations of Dunn ef al (1990) and the numerical results. (Key as
for (2).)

For this analysis, we consider as before a T, ion at a site of T, symmetry coupled to
the t, vibrations of its surroundings. In order to use the method, it is necessary to have
expressions for the ground and excited vibronic states in symmetry-adapted form. Such
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sets of states have been obtained by Dunn (1989) from a unitary transformation method
followed by an energy minimization procedure as described in the series of papers by
Bates er al (1987), Dunn (1988), Bates and Dunn (1989) and Dunn and Bates (1989a,
b). {It would appear that, as the symmetry-adapted states are not continuous functions
of 0, it is unclear whether it is necessary to incorporate the factor due to Berry’s phase
(O’Brien 1989, Ham 1990).)

In this model, the z-component of the ground T, vibronic triplet is written in the
form

[T1:t) = Nn(—la'; 0) + |5, 0) + |c'; 0) — [d"; O}) (.1
while the inversion level of A, symmetry at a relative energy of 4 is written in the form
|A,t) = Na(la’; 0) + |B'; 0y + Je'; Oy + |d’; O)). (5.2)

in the above, |a’; 0y = U,|a; 0) etc, where a labels the trigonal well and simultaneously
gives the associated orbital state such that

a=(1/V3)(x+y-2) c=(1/VIH(~x +y+2)

5.
b=(1/V3)(x—y+2) d=Q1/V3(-x~y-2). G-3)
Also ‘0" denotes that there are no excitations in any of the t, oscillators with respect to
the transformed picture and U, (etc) is the value of the unitary transformation U
evaluated at the a minimum (etc) and is nsed to transform the states back to the orginal
basis. The other members of the ground triplet [Ty.t}, [Tyt are obtained by cyclic

permutation of the labels x, y, z and hence of @, b, ¢. The Ns are normalizing factors.
The excited vibronic states are much more complicated. A convenient form is (Dunn
1989}, where [, m, # give the number of t, oscillator excitations of symmetry yz, zx, xy,

W.(l,m,n)=N{l,m, neo,(mn) (5.4)

respectively and N, are normalizing factors. The label / goes from 1 to 19; expressions
for the g; are given in table 2 of Dunn (1989). The states are written in terms of the
functional states as

[Tx(, m, n)) = [¢' + (~D)™*nd’ ~ (= 1)"*a’ — (~1)*7p’; 4'576")
ITy(l, m, n)) = B + (—=1)**'d’ — (—=1)!* 7’ = (=1)™*"a’; 4/5m6n)
[Tz, m, ) = |a' + (=1)1*™d" — (=1 b = (=1)"*(c'; 456"
|E(, m, n)}y = |a’ + (=1)™**b' + (=1)"*c" + (—1)*7d, 415mgny,

(5.5)

Equation (2.8} gives the general expression for the off-diagonal reduction factor in
terms of oscillator overlaps which we need to calculate. Fortunately, a number of
simplifications can be made. AsI'= T, and @ = A, for the T; ®t, system, (T, X T;)
must be of symmetry T,, 50 M = T, in (2.8). Also, as the orbital part of the A, inversion
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state has T, symmetry, the oscillator parts must be of T; symmetry only. Thus in the 6T

sy.nbols
[Q r M]
T, T, A

we have A = T,, so only the excited vibronic states |[N(T;)I"y) contribute. This means
that equations (2.8) and (I; 2,32) simplify to

1 1 1
KO(T,I(T, X T,)|A) = E( + )
n(TilT X T)A) =577 2 EO B0 P EU - D

Az

X {0(AL)T27| | N(T2)ToyHM(T:)T> Y {O(T )T, 7} (5.6)

In order to extract the required oscillator parts of the vibronic states, it is necessary to
use the expansion formula given by (2.1) using Clebsch-Gordan coefficients appropriate
to the T, group (The latter are given in Griffiths (1962), Koster et al (1963) and Sugano
et al (1970), for example.) Thus {T,,t), |A,t) and |{N(T,)I'y) must be expanded in terms
of the orbital states |x), |y) and | z) and the oscillator states obtained from a combination
of the U,, U,, U, and U, acting on |0, 0, 0) for the ground states and on |4/5™6") for the
excited states. On comparing these expressions with those obtained from the expansion
formula and equating the coefficients of the equivalent orbital states, the resulting
simultaneous equations are easily solved.

The excited vibronic states of T, symmetry are those for which/ = 7, 8, 9in equation
(5.3). Thus from table 2 of Dunn (1989), they are given by

@, = |Tx({{, m, n)) — |Tx({, n, m)}
@g = Ty(n, I, m)) — [Ty(m, I, n)) (5.7)
95 = Tz, n, ) = [T2(1,m, )
with m > n. (Note that g, differs from the expression given in Dunn (1989; table 2) by
a phase factor of —1; this factor is introduced here to ensure that the states ¢; — @ohave
the correct relative phases which is important when comparison with the Clebsch-
Gordan coefficients is made.)
The T»E-components of the oscillator states required are
|0(T1)T2E = ~VENy(U, + U, — U, — U)|000)
|0(A)T&} = VENA(U, + U, + U, + U,) |000) (5.8)
|N(T2)T2 8} = V(g — Uy + Ug — Us)
where
Uy = [Uy = (=D "0, = (=17 U + (-1)*0, ] |475'67)
Uy = [Uy = (=1)""Uy = (=170, + (1) U,] [475'6")
WUy =[U, — (- "U; + (=)0, — (1)U, ] [4m576%}
Ug = [U, = (=1)"*" Uy + (—1)*"U, — (—1)!*°U, ] [475m6%).

(5.9)

The oscillator overlaps may then be calculated using the standard procedures described
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Figure 2. Plots of the inversion splitting & {broken curve) and the off-diagonal reduction
factor Kf,lz‘ (T\{T, x T1)|A,} (uiangles) as a function of Kr in units of A,

in detail in our earlier publications. The most useful relation needed is (Bates and Dunn
1989)

O00\UT U, 1475%6") = S,(DEy (DE Y (DENy f(ristit) /2 (5.10)
where k, I label the wells and DY involves the associated phonon creation and annihil-

ation operators. ( Explicit expressions for the Ds are given in Bates and Dunn (1989),
equations (3.7} and {4.7), for example.) After some algebra, we obtain the resujt

KE(T, X T)IAz) = (/9VIX (g6 + Zoa) (5.11)
where

X' = 1652 Ny, Ny, = 482((1 ~ §) (1 + 453" (5.12)
with S, an osciflator overlap (such as {(0{ ¢ U, 6} } and

gn=2 2 Tpl,m,0)  (R=T,A)

1=0m=1
with

Ferll,m, 0) =

1+ m 2
N3(t, m1, 0) ¥ =29§(KT) R

Nml(E,(1, m, 0) ~ Egy) Ry

The expressions for Tgg involve the same type of summations as those obtained by Dunn
et af (1990) for the standard second-order reduction factors K(T, x T,) but T,
involves the energy of the inversion fevel £,, as well as the energy of the ground state
Eq.

Figure 2 shows a plot of the off-diagonal reduction factor given by (5.10} as a function
of the coupling constant Kp/Awy, for Ky/foy greater than 0.8. The graph has only been
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plotted for large K/Aw; because the model is valid in the moderate to strong coupling
regime and it is also necessary to ensure that the inversion level has an energy well below
that of the next excited state. Also shown in the figure is the energy  of the inversion
level. This clearly shows that the contribution to the effective Hamiltonian from off-
diagonal terms such as spin—orbit coupling should not be neglected in the range of Ky/
fwy considered above,

In the strong coupling limit, it is easy to show that

X'—45? = 4% ger— ¢V /16hw,Y (5.14a)
so that:
KO(T, Ty x T)IA) =1/(3V3E). (5.140)

This resuit is exactly the same as that obtained in (4.11) by the alternative direct method
and shows that anisotropy can be neglected in this calculation.

6. Discussion and conclusions

This paper has shown how second-order vibronic reduction factors for spin—orbit coup-
ling can be obtained from the general formalism described in Polinger et af (1991). The
calculations show that the factors can be obtained as sums of various oscillator overlaps
which need to be expressed in symmetry-adapted form. Work is currently in progress in
which the perturbations T, and I, are of E, T, and mixed symmetries for T @ t, systems.
Also, other similar calculations will shortly be reported on the T ® (e + t,) system
(Hallam et al 1991). Work has also started on the E & e system (Badran and Bates 1991)
and the general formalism is expected to be of much use here as well.

The calculations described above are analytical whereas, as far as we are aware, all
other calculations are numerical. The off-diagonal matrix element of the spin-orbit
coupling K%’ (T, % T,) between the ground vibronic state and the inversion state does
not appear to have been calculated previously by any method except in the very strong
coupling limit. The calculation itself is straightforward and involves algebraic manipu-
lation of the various overlaps only. The procedures for correcting for anisotropy are also
well established and give results to an accuracy dependent upon the order of the
perturbation theory which is used in the analysis.

It is also relevant here to comment on the good agreement between the calculation
of the second-order reduction factors discussed in Dunn ef af (1990), Polinger et al
(1991) and here using states derived by the transformation method and other numerical
calculations. The exient of this agreement poses some very interesting and fundamental
questions as regards the accuracy of the transformation method, which can be con-
veniently discussed through these second-order reduction factor calculations.

When linear combinations of states localized in the wells are taken to form new states
of cubic symmetry (see, e.g., Dunn 1989), the new states are no longer related to the
original set by a unitary transformation. This obviously must introduce some error (see
the original discussion in Bates et / (1987) and Dunn (1988)) but this error appears to
be small for most ranges of coupling constants considered. To check this point, detailed
investigations have been carried out for the T & t, problem and we find that the overlap
matrix is positive definite for a total number of at least eight phonon excitations, giving
180 states in total. This statement is true even for the region of maximum oscillator
overlap which occurs for vertical transitions from the lower minima in the potential
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surface to the upper potential sheet (analogous to the Frank—-Condon transition in
molecular spectroscopy). For T ®t, systems, the energy gap corresponding to the
vertical transition is 3E as discussed above. In our analysis, we find that these con-
tributions are much smaller than those of oscillator states of lower energy for every
value of the coupling constant. Also, the movement away from the unitariness in the
transformation method produces non-orthogonality between the states and thus should
create anon-positive-definite classification of the overlap. Fortunately this error issmall,
as shown by the closeness of the results calculated using the transformation method
(Dunn et al 1990) to the numerical calculations of O'Brien (1990). This error could be
removed entirely if procedures could be introduced that completely orthogonalized all
the states. The only way to do this would be by numerical methods, but this would then
be little different from other methods.
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