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1. Phys.: Condens. Matter 3 (1991) 3441-3453. Printed in the UK 

Vibronic reduction factors for second-order spin-orbit 
coupling 
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t Physics Department, The University, Nottingham NG7 ZRD, UK 
t Institute of Chemistry, Academy of Sciences of the Moldavian SSR, Grosul Street 3, 
277028 Kishinev, USSR 

Received 4 January 1991 

Abstract. Semnd-order vibronic reduction factors lor spimrbi t  coupling are derived for 
orbital triplet systems using the recently derived symmetry-related method. This involves 
the calculation of oscilator overlaps which are projected out of the cubic vibronic states. 
Detailsarepresentedinthe weakwuplinglimit f o r T B e , T B t , a n d T B ( e  + t,)vibronic 
systemsand in thestrong coupling limit for T@ e andT B t,systems. The aoalysesareshown 
to be in agreement with those obtained by other methods. The discussion is then extended 
to the calculation of the off-diagonal matrix element between the vibronic T, ground state 
and the A,invenionlevelofaT, ion fo r theTB t,systemusingsymmetry-adaptedvibronic 
states. The effects of anisotropy in the problems studied are also briefly discussed. 

1. Introduction 

In a very recent paper, Pohger  et aI(1991, to be referred to as I) developed a general 
theory for tbe derivation of second-order vibronic or Jahn-Teller (IT) reduction factors 
associated with apurely electronic perturbation V acting within a vibronic system. The 
analysis was based entirely on symmetry grounds. It wasshown that the reduction factors 
could be deduced from the evaluation of the sums of various oscillator overlaps. Explicit 
expressions were derived for both those second-order reduction factors KC)(T, x rl) ,  
that act entirely within the ground degenerate state of the system, and for the off- 
diagonal second-order reduction factors K$(TITk X T,lQ), which act between the 
ground state of symmetry r a n d  the inversion level of symmetry Q, rk and Tr denote the 
symmetries of the two parts of Vinvolved in the calculation. The formalism is such that 
rk and T I  can refer to the same or different parts of the perturbation V. 

These second-order terms become particularly important in many cases of strong 
coupling especially in the case of orbital triplets (described by the isomorphic orbital 
angular momentum operator I = 1) as they can then dominate the first-order terms 
which involve the first-order reduction factor K(M). The general principles are discussed 
in the books by Perlin and Wagner (1984) and Bersuker and Polinger (1989, to be 
referred to as BP) but further details are given in I which also gives references to other 
work. 

A few applications of the method were given in I using spin-orbit coupling A 1 .  S as 
an example, in which both rk and rl transform as TI. In this paper we give further 
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examples of the method taking spin-orbit coupling as the example once more. The 
formulae quoted in I will be used to derive values for the various (diagonal) reduction 
factors in both the weak coupling and strong coupling limits. This is followed by a 
calculation of the off-diagonal reduction factor for orbital triplets coupled to t2 modes, 
normally referred to as the T @ t2 JT system. 

C A Bates et ai 

2. Mathematical background for orbital triplets 

We consider an isolated orbital triplet which is strongly coupled t3 the vibrations of its 
surroundings. The electronic orbital states may be written in the form Yry(r) = ITy); 
the eigenstates of the system are vibronic states which are written in the form 
'U;! = I jVfy). The labels rygive the irreducible representation (IR) and the component 
of the state while N labels the repeated IR of the vibronic state such that their energies 
Eby increase with increasing N .  In I, vibronic eigenstates were written as sums of 
products of electronic and vibrational states by using a Clebsch-Gordan convolution 
form: 

INTY) = 2 i.-w~(r)M}(~ofiIry) (2.1) 
O M  

where (ZuMIry) are the Clebsch-Gordan coefficients and IN@) M} = xF)(Q) are 
functions of the nuclear coordinates Q and thus represent the phonon states. 

The perturbation V (=U S) can cause a splitting of the ground vibronic state lory) 
in first order which can be described by the Hamiltonian K(T,) A l .  S. In second order, 
the additional splitting can be described by the effective Hamiltonian 

with V = A l .  S. %e(2) dependsuponthenuclearaswellasthe spacecoordinates. However, 
as the contributions from the summation in (2.2) form a scalar, the symmetry of %e(') 
depends only on the symmetry within V x V. This means that the effective Hamiltonian 
to describe the vibronic system can be obtained from the purely electronic Hamiltonian 
by multiplying (V x V) by K;) ( r ,  X r,) with rk = r, = TI where (I, equation (2.17)) 

(2.4) 

In the above, the oscillator overlap integrals are {O(Q)@l IN(A)Q} while the remaining 
termsgive numerical factors. Also the 6Tsymbols are written with large square brackets, 
the fictitious angular momentum operator asj(r) and the dimension of a representation 
with smallsquare brackets (see, e.g., Griffiths 1962). 
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The second-order spin-orbit coupling can be written as an effective Hamiltonian in 
the form 

(2.6) %e - a2 2 KWLW $2) 
eff - M MP W 

MP 

where LE; and S$L are the second-order orbit and spin operators respectively, which 
transformasMpandwhereKE) = K$)(T, x T,)withM = A,,E,T,,T,.Itisnecessary 
to equate %e(2) with XeR. This is readily achieved by expressing the K$,? as sums of terms 
involving RA(Tl) with A = A,, E, T1, T2, where 

RA(T1) = J?. (2.7) 
N 

Explicit expressions for the RA(TI) are given in (I; 2.28) and the corresponding 
expressions for K$) in (I; 2.27). 

In a similar way, the off-diagonal second-order spin-orbit reduction factors that are 
associated with the coupling between the ground vibronic state r and the vibronic 
inversion level r a r e  given by (I; 2.30): 

where 

K$(E)  = s,(T,N-)s~(T,AQ)/(E$) - E?). (2.9) 

It is not straightforward to apply these general results to real systems (except to T @ e) 
due to the difficulties in obtaining orthogonal sets of symmetry-adapted states and 
evaluating the relevant overlaps. However, it is possible 'to undertake very accurate 
analytical calculations in the limits of very strong and very weak coupling. Such cal- 
culations are useful because they enable boththe magnitude and form of the dependence 
of the reduction factors on the coupling parameter(s) and frequencies to be determined. 
They also give insight into the underlying physical mechanisms involved in their deter- 
mination and give a guide to the accuracy of approximate calculations in finite coupling. 
These limiting cases will therefore be considered first of all followed by a calculation of 
the off-diagonal reduction factor for T @ t2 systems. 

3. The limiting case of weak vibronic coupling 

Inthe limit of infinitely smallvibroniccoupling, the overlapintegrals{O(T,)M[ /N(Tl)M 
vanish for N # 0, due to orthogonality of the oscillator states, which are centred at the 
origin of Q-space. Therefore, an expansion of these overlap integrals in the form of a 
power series in Vis appropriate. As this overlap is squared in the expression given in 
(2.4), it follows that, to obtain K,,, to second order with respect to V, it is necessary to (2) 
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take the states IN(Tl)l\n} to first order in V only. Also, as the coupling is weak, it is 
appropriate to exclude bilinear and higher-order vibronic couplidg terms from the 
calculation. We consider therefore the linear vibronic coupling as a perfurbation on the 
general mixed orbital-xcillator state 10(Tl)I‘y}. 

For the T 63 t2 system, the vibronic coupling admixes states differing by one in the 
oscillator occupation number such that the perturbed state can be written as 

C A Bates et ai 

i o ( ~ , ) r Y }  = 10)6rA, - [vT/(nmw:)’izi 1 1 ~ ) 6 ~ ~ 6 ~ ,  (3.1) 

where IO) is the oscclator ground state (WO), and Ilp) is either IlOO) or (010) or (001) and 
VT is the ion-lattice coupling constant. Similarly, the excited state can be written as 

/1(A)r?’} = 11/d6iT26yp6(.4,TrYr) -k [vT/(smw~)1i2] 10)6rA16AT, ( 3 4  

where 6(A, r, x r,) = 1 if A E (r, x r,) and 0 otherwise. Substituting (3.1) and (3.2) 
into (I; 2.28) and noting that termsin which N # 1 do not contribute, we obtain 

RA, = 0 RE = 3RT2 RT1 = 9RT2 RT2 = -ETt/(24?izw+) (3.3) 

(3.4) 

(3.5) 

(3.6) 

where ET, is the JT energy. It follows from (I; 2.27) that, in the weak coupling limit, 

K!; = 2KE) = 2I&!: = -f(9ETJh’w+) 

Results for T 63 e can be obtained following the same procedures, to give 

K(” - 

RT, = 3RT2 = -$ET,/ii’w~ 

T~ - -H15E~t/fi~w+). 

RA, = RE = 0 

Kfj = K g )  = 2$,) 

and thus 

KT, (’) - - K‘*’ T~ - - -t(3ET,/h2&). 

These results coincide with the exact results of Ham (1965) in the limit of first-order 
powers in E,, the IT energy. 

A simple analysis shows that in the case of weak vibronic coupling to both e and t2 
modes (i.e. in the T63 (e + tz) problem), the second-order reduction factors are sums 
of the two corresponding results for T @ e and T 63 t2. Thus from (3.4) and (3.6) we 
obtain, for example, 

(3.7) K‘2’ - . 
A ,  - -8[2ET,/(fiwE)’ + 3&t/(h”r)2]. 

In the limit of weak coupling, the formulae developed above have enabled us to calculate 
the reduction factors directly. All the results obtained are in agreement with the recent 
calculations of O’Brien (1990) with the k2 of OBrien equal to (3E,,)/2(h~)~, with E,, 
the appropriate IT energy and with wE = wT = w .  (Note that the references in O’Brien 
(1990) to ‘Polinger (1989,1990), private communication’ are to this paper.) 

4. Strong vibronic coupling 

In the very strong coupling limit, the potential energy terms are dominant. It is con- 
venient then to describe the system in terms of potential energy surfaces or sheets in Q- 
space, where the lower sheet contains equivalent minima. The number and symmetry 
of the minima depend upon the symmetry of the vibrations used in the vibronic-coupling 
Hamiltonian. The system will reside in one of these minima. Also, in this limit, the 
energy gaps between lower and upper sheets are much larger than the vibrational 
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quantum (i.e. Ems fiw,). This means that the nuclear motion can be separated from 
the electronic motion as the electrons are a fast-moving sub-system in contrast to the 
much more slow-moving nuclear system. As the whole system becomes frozen in one of 
theminima, the kineticenergy termcan bedroppedfromthe basicHamiltonian (1;2.1). 
Thus the eigenvalues ci(Q) of the potential operator U(r,  Q) for the nuclei moving in 
the mean field of the electrons are functions of the Q, which can be treated as free 
parameters. The corresponding adiabatic electronic eigenfunctions can be written as 
Yi(r, Q) where rdenotes the electronic position. 

In order to proceed, it is necessary to know the transformation properties of Y(r,  Q) 
under the symmetry group of the system. However, as this eigenfunction is explicitly a 
continuous function of the nuclear space variable Q, it may be necessary to take into 
account Berry’s phase when some symmetry operation that describes a closed path in 
Q-spaceisconsidered (Ham 1987,1990, O’Brien 1990). This indicates that the electronic 
adiabatic wavefunction of a JT system should transform according to a singlet IR of a 
double or more complicated symmetry group. Unfortunately, full details of the pro- 
cedure required here are not yet available. Thus it is not possible at present to take full 
advantage of the symmetry arguments described above on the eigenfunctions such as 
W, Q). 

Instead, we will calculate the second-order vibronic reduction factors for the strong 
coupling case by a direct substitution of the adiabatic vibronic states, which are written 
in the form 

where @$ are the nuclear wavefunctions associated with the electronic states W,. The 
index m labels the repeated IRS of the vibronic states while N corresponds to a pair of 
the indices i and m (i.e. N 

If (4.l)is substituted into the basic formulae for second-order perturbation theory, 
it is necessary to evaluate matrix elements of the components (e.g. lp) of the angular 
momentum between sets of the vibronic states. We then obtain 

INI-7) = Ivi(r, Q)@$(Q)) (4.1) 

{i, m}). 

( o r k ~ , l I p I ~ , ~ , )  = (Y& Q)PPlvi(r, Q))(@(Q)Id?(QB. ( 4 4  
To evaluate the overlap integrals (qr)(Q)l~,;(Q)) in the limiting case of strong 
coupling, the Frankkcondon principle (see, e.g., Herzberg 1950, Landau and Lifshitz 
1977) can be used. The largest contributions are then assumed to come from ‘vertical’ 
transitions in a configuration coordinate diagram. That is, the separation between the 
excited state pl: and the ground state pio) is approximately equal to the energy gap Ai 
between the appropriate sheets of the adiabatic potential energy surface. However, Ai 
must be evaluated at the same coordinate Q = Qo where Qo corresponds to a minimum 
in the lower potential surface. Consequently the energy denominator Er’ - E(M z in 
(2.2) can be removed from the summation over m and be replaced by the energy gap Ai 
where 

For the T@ t2 JT system, there are four equivalent minima with Ai = 3ETt (see, e.g., 
Opik and Pryce 1957). Then the energy gap Aican be taken outside the summation over 
N .  Also, the remaining sum over m for each sheet may be removed on account of the 
completeness theorem: 

(4.3) - E(M 
E o(Qo) - ci(Qo) = -Ai. 

zld?(Q))(d?(Q‘)l= WQ - Q’) (4.4) 
m 

for the set of adiabatic wavefunctions q$. 
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Asimilarconditionofcompletenessapplied to the adiabaticelectronicstatesYi(r, Q )  
gives 

Thusonsubstitutingtheseresultsinto(2.2) andusingthegeneral relation (1;2.18) while 
noting that 

(V&, Q)l$lW~(r, Q))  = O  
we obtain the required expression for the second-ord reduction factor: 

This result can be rewritten in the form 

Kr o) ( T, x T,) = K‘;?) = -(I/~E,)K(T) (4.7) 
where K ( T )  is the first-order vibronic reduction factor for the electronic operator 
&,(TI x T,). First-order factors have been studied extensively by both numerical and 
analytical methods (see, for example, BP). In the limit of strong vibronic coupling for 
theT@tt,rrproblem,K(A,)= 1,K(E)=K(Tl)=OandK(T2)=6,so 

K t l  = -1/3ETt @) = K(2) TL = 0 K f ;  = -2/9En. (4.8) 

Thus from (I; 2.28) we obtain 

RA, = 0 RE = -1/27ETt RT, = -1/54Er1 R,  = -1/162E+t. 

The equivalent result for the off-diagonal reduction factor is given by 

K~;(TII(TI x T1)IAd = 1/(3dE+J.  (4.9) 

These results are the same as those of OBrien (1990) with her kZ = 3E&. (Note that 
the definitionof the off-diagonal reduction factor implied in (2.8) and used subsequently 
here includes the ‘normalizing’ factor (rl X r,)l Ir) from (I; 2.29). This factor 
has a value of 4 here.) 

Even though theT @ e rrsystem isexactly solvable, it isinterestingtoapply the same 
approach to this system. The ‘vertical’ energy gap between the potential sheets at any 
one of the three values of Q,  corresponding to the tetragonal wells is 3ETe and the first- 
order reduction factors are K(A,) = K(E) = 1, K(Tz) = K(Tl) = 0. Thus 

K f )  I Kf) = -1/3E~< K“) TI - - fp) T2 - - 0 (4.10) 

which coincide with the exact results of Ham (1965). The corresponding expressions for 
the RA factors are 

R A ,  = RE=O R,, = R T 2  = -1/54ET.. (4.11) 

The problem of the strongly coupled T @  (e + tz) system when the nuclear motion is 
localized in one of the six orthorhombic minima can also be treated in a similar way. 
However, the calculations for this case are somewhat more complicated because, in the 
orthorhombic nuclear configuration, the electronic degeneracy is completely lifted and 
thus the simplifying relation (4.5) cannot be used. 



Second-order spin-orbit coupling 3447 

It is interesting to compare the results (4.8) with those derived from the analytic 
approachofBatesandDunn (1989)andDunneta1(1990)for thestronglycoupledT8 t2 
JT system. In the strong coupling limit, both the simple approach of Bates and D u n  
(1989) andthemore accurateresultsofDunnetal(1990, fromequations(4.3) and (4.9)) 
give the result 

K g  = -1/2Em K ,  (2) - - K(2) T, - - 0  K?: = -1/3ETv (4.12) 

These values are each 1.5 times the results given in (4.8). The origin of this difference is 
the neglect of anisotropy in the analytical calculations. This point was discussed briefly 
in the paper by Dunn et af (1990) in relation to a comparison of revised graphs showing 
the variations of the second-order reduction factors as a function of the strength of the 
coupling represented by the parameter KT. 

To check this point, further calculations of the second-order reduction factors for 
the T 8 t ,~~sys tem have been undertaken in which the oscillator frequency o,has been 
replaced by weH where 

(4.13) 

where Z is a complicated function of ET, and wT defined in equation (3.5) of Dunn and 
Bates (1989a, b). This is obviously not an accurate calculation but it produces the results 
shown in figure l(a). The reduction factors are plotted in the form of A, BE, B and C 

included are the numerical results of OBrieo (1990). For comparison purposes, the 
results of Dunn etaf  (1990) are included in figure l(b). From these results, it is clearly 
seen that our revised analytical calculations here give values for the reduction factors 
that are much closer to those of O’Brien (1990). In the strong coupling limit (where KT/ 
fLwT is much greater than 1) where wee becomes m a T ,  the new graphs are very 
close to the asymptotic h i t  shown by the numerical calculations. This accounts for the 
factor of 1.5 mentioned above. Also, the positions of the maxima and minima along the 
KT axis (where KT = f(3ET,/~~T)”2) are much closer to those obtained numerically. 
Thus even though anisotropy corrections have been included in an approximate way 
only, the results agree more closely with those obtained by numerical methods than they 
do when anisotropy is neglected (figure l(b)). It should be noted that the maximum and 
minimum values are themselves somewhat larger than those of O’Brien (1990) and that 
for very small values of KT the curves do not all point towards zero. The reason for these 
discrepancies is that the states become less orthogonal as K,decreases towards zero (see 
Dunn et a1 1990). It was found that orthogonalization reduces the sizes of the peaks 
whilst making only very small changes to the peak positions. The same result will apply 
here but the algebra is very lengthy, so it has not been presented here. 

w,g = WT( 1 - Z) 

as in Dunn et al(1990) where A = -kKf:, BE = @I, BT = Kfj and C = +KAI. (4 Also 

5. Off-diagonal reduction fadcor 

There have been very few calculations of the off-diagonal second-order reduction factors 
for any system although O’Brien (1990) calculates the asymptotic limit for T 8 t, as 
mentioned previously. Such factors become significant whenever the inversion splitting 
becomes comparable in size with the second-order terms from a perturbation such as 
spin-orbit coupling. It is appropriate therefore to carry out a calculation of such off- 
diagonal terms using the theory described in I. It also illustrates in detail the procedures 
involved for the general case. 
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FIgure 1. (a) The reduction factors A,  BE, B, and C calculated alter anisotropy has been 
included using the approximate formula for iod, as given in equation (4.13). Also included 
are the numerical resulls (denoted by 0, 0, A and * respectively) obtained by OBrien 
(1990). (b)TheoriginalcalculationsofDunnelal(1990)and the numericalresults. (Key as 
for (a).) 

For this analysis, we consider as before a TI ion at a site of Td symmetry coupled to 
the t2 vibrations of its surroundings. In order to use the method, it is necessary to have 
expressions for the ground and excited vibronic states in symmetry-adapted form. Such 
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sets of states have been obtained by Dunn (1989) from a unitary transformation method 
followed by an energy minimization procedure as described in the series of papers by 
Bates et a1 (1987), Dunn (1988), Bates and Dunn (1989) and Dunn and Bates (1989a, 
b). (It would appear that, as the symmetry-adapted states are not continuous functions 
of Q, it is unclear whether it is necessary to incorporate the factor due to Berry's phase 
(OBrien 1989, Ham 1990).) 

In this model, the z-component of the ground T1 vibronic triplet is written in the 
form 

ITl,t) = NTt(-la'; 0) + Ib'; 0) + IC' ;  0) - Id'; 0)) (5.1) 

while the inversion level of A, symmetry at a relative energy of 6 is written in the form 

IA2t) = Nn,(la';O) + 16'; 0) + IC'; 0) + Id'; 0)). (5.2) 

in the above, la'; 0) = Vola; 0) etc, where a labels the trigonal well and simultaneously 
gives the associated orbital state such that 

a = (l /d3) ( X  + y - Z) 
b = (l/d3)(x - y + 2 )  

C =  ( l /d3) ( - .~  + y + Z) 
d = ( l / d 3 ) ( - ~  - y - 2)) .  

(5.3) 

Also '0' denotes that there are no excitations in any of the lz oscillators with respect to 
the transformed picture and U, (etc) is the value of the unitary transformation U 
evaluated at the a minimum (etc) and is used to transform the states back to the orginal 
basis. The other members of the ground triplet IT&, IT$} are obtained by cyclic 
permutation of the labels x ,  y, z and hence of a, b, c. The Ns are normalizing factors. 

The excited vibronic states are much more complicated. A convenient form is (Dum 
1989), where I ,  m, n give the number of t,osciUator excitations of symmetry yr ,  r x , n y ,  

Yi(L m, n )  = N i ( L  m, n ) q i ( L  m,  n )  (5.4) 

respectively and Ni are normalizing factors. The label i goes from 1 to 19; expressions 
for the qi are given in table 2 of Dunn (1989). The states are written in terms of the 
functional states as 

JTx(l,m,n))= IC' + (-l)"+nd' - (-l)n+'a' - (-l)'+mb';4'5m6") 

ITy(l, m, n))  = Ib' + (-l)"+'d' - (-l)'+'"c' - (-l)m'na'; 4'5'"6") 
(5.5) 

JTr(l, m, n)) = la' + (-1)""'d' - (-1)'"'" b - [ - l )n+f~ ' ;  4'Sm6") 

IE(Z,m, n ) )  = la' + (-l)"+'"b' + (-l)n+'c' + (-l)'*'"d';4'5"6"). 

Equation (2.8) gives the general expression for the off-diagonal reduction factor in 
terms of oscillator overlaps which we need to calculate. Fortunately, a number of 
simplifications can be made. As r = T1 and 8 = A, for the Tl C3 t2  system, (T, x T,) 
must be of symmetry T,, so M = T2 in (2.8). Also, as the orbital part of the A2 inversion 
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state has TI symmetry, the oscillator parts must be of TZ symmetry only. Thus in the 6 r  
s) ,:ibols 

C A Bates et a1 

Cl :I 
we have A c T,, so only the excited vibronic states IN(TJry) contribute. This means 
that equations (2.8) and (I; 2.32) simplify to 

X {O(AZ)TZYI I N(TZ)T~Y}WUZ)TZYI I W I ) T Z Y I .  (5.6) 
In order to extract the required oscillator parts of the vibronic states, it is necessary to 
use the expansion formulagiven by (2.1) usingClebsch4ordan coefficients appropriate 
to the T,, group (The latter are given in Griffiths (1962), Koster etal(l963) and Sugano 
eral (1970), for example,) Thus jTl,t), IAzt) and IN(T2)Ty) must be expanded in terms 
of the orbital states Ix), Iy) and lz) and the oscillator states obtained from a combination 
of the U,, U,, U, and U, actingon 10,0,0) for the ground states and on 14'jm6") for the 
excited states. On comparing these expressions with those obtainedfrom the expansion 
formula and equating the coefficients of the equivalent orbital states, the resulting 
simultaneous equations are easily solved. 

The excited vibronic states of T, symmetry are those for which i = 7,8,9 in equation 
(5.3). Thus from table 2of Dunn (1989). they are given by 

~7 = ITx(1, m, n)) - ITx(l, n, m)) 
~8 = ITy(n, 1, m)) - ITy(m, I ,  n)) (5.7) 

p9=ITz(m,n,[l)-ITz(n.m,I)) 

with m > n. (Note that ps differs from the expression given in Dunn (1989; table 2) by 
a phase factor of - 1; this factor is introduced here to ensure that the states ~ 1 ,  - p 9  have 
the correct relative phases which is important when comparison with the Clebsch- 
Gordan coefficients is made.) 

The T,&components of the oscillator states required are 

IOOi)T2E} = -V'\/3Nm(Ua + U, - U, - U,) 1000) 

IO(Az)T25}= v/3N~t(u~ + Ub + Uc + U,) 1000) 

IN(T~)TzE} = dk(% - '% + 91, - %) 
(5.8) 

where 

~ ~ [ U ~ ~ ( ~ l ) m ~ n U ~ ~ ( ~ l ) ' t m U ~ + ( ~ l ) ' t n U ~ ] ~ 4 m 5 ' 6 " )  
%7= [U, - (-l)"'+"U, - (-l)'+"UC + (-l)'tmU,] 14"5'6'"} 

(5.9) %v = [U, - (-l)"+"U, + (-l)'+"ub - ( - l ) ' + m u  ,] 14"'5"6'} 

%g = [Ua - (-l)mt"Ud + (-l)'+mUb - (-l)'+"Uc] 14"5'"6'}. 

The oscillator overlaps may then be calculated using the standard procedures described 
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K,/hw, 

Figure 2. Plot8 of the inversion splitting 6 (broken curve) and the off-diagonal reduction 
factor Kyi(T,I(T, x T,)IA,) (triangles) as a function of &in unitsof hm,. 

in detail in our earlier publications, The most useful relation needed is (Bates and D u m  
1989) 

where k, 1 label the wells and D$*'1 involves the associated phonon creation and annihil- 
ation operators. (Explicit expressions for the Ds are given in Bates and Dunn (1989), 
equations (3.7) and (4.7), for example.) After some algebra, we obtain the result 

(5.11) 

(OOOlUj+ UkI4'5'6') = s , ( D k " " ~ ( D : ~ ) ' ( D ~ ~ ) ' / ( r ! s ! r ! ) ' / '  (5.10) 

K?;(Ti X TI)\&) = (2/9VW'(gm +&A) 

X' = 16S:N,NA, = 4$((1- SJ(1 + &Y,))-" 
where 

(5.12) 

with S, an oscillator overlap (such as (01 U: Ub/OJ) and 
( 9 -  

g6R = L: 2 r d ,  m, 0) (R = T, A) 
I = O m i ; l  

with 

The expressions for r,, involve the same type of summations as those obtained by Dunn 
et a1 (1990) for the standard second-order reduction factors KEl(T1 X TI) but r6, 
involves the energy of the inversion level EA, as well as the energy of the ground state 

FigureZshowsaplot oftheoff-diagonalreduction factorgivenby(5.10) ma function 
of the coupling constant K,/ho,, for K,/fio,greater than 0.8. The graph has only been 

En. 
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plotted for large K T / f i ~  because the model is valid in the moderate to strong coupling 
regime and it is also necessary to ensure that the inversion level has an energy well below 
that of the next excited state. Also shown in the figure is the energy 6 of the inversion 
level. This clearly shows that the contribution to the effective Hamiltonian from off- 
diagonal terms such as spin-orbit coupling should not be neglected in the range of KT/ 
boT considered above. 

In the strong coupling limit, it is easy to show that 

X' + 4s: = 4e4Y g6R-j eZY/16hwTY (5.14u) 

so that: 

K Q ( T ~ I ( T ~  x T,)IA,) = i / ( 3 * ~  (5.146) 

This result is exactly the same as that obtained in (4.11) by the alternative direct method 
and shows that anisotropy can be neglected in this calculation. 

6. Discussion and fondusions 

This paper has shown how second-order vibronic reduction factors for spin-orbit coup- 
ling can be obtained from the general formalism described in Polinger et a1 (1991). The 
calculations show that the factors can be obtained as sums of various oscillator overlaps 
which need to be expressed in symmetry-adapted form. Work is currently in progress in 
which the perturbations r, and rk are of E, Tz and mixed symmetries for T 8 t, systems. 
Also, other similar calculations will shortly be reported on the T 8 (e + tz) system 
(Hallam et a1 1991). Work has also started on the E 8 e system (Badran and Bates 1991) 
and the general formalism is expected to be of much use here as well. 

The calculations described above are analytical whereas, as far as we are aware, all 
other calculations are numerical. The off-diagonal matrix element of the spin-orbit 
coupling @!(TI x TI) between the ground vibronic state and the inversion state does 
not appear to have been calculated previously by any method except in the very strong 
coupling limit. The calculation itself is straightforward and involves algebraic manipu- 
lation of the various overlaps only. The procedures for correcting for anisotropy are also 
well established and give results to an accuracy dependent upon the order of the 
perturbation theory which is used in the analysis. 

It is also relevant here to comment on the good agreement between the calculation 
of the second-order reduction factors discussed in Dunn et a1 (1990), Polinger el a1 
(1991) and here usingstates derived by the transformation method and other numerical 
calculations. The extent of this agreement poses some very interesting and fundamental 
questions as regards the accuracy of the transformation method, which can be con- 
veniently discussed through these second-order reduction factor calculations. 

Whenlinear combinationsofstates localizedin the wells are taken to form new states 
of cubic symmetry (see, e.g., Dunn 1989), the new states are no longer related to the 
original set by a unitary transformation. This obviously must introduce some error (see 
the original discussion in Bates el a1 (1987) and Dunn (1988)) but this error appears to 
be small for most ranges of coupling constants considered. To check this point, detailed 
investigations have been carried out for the T 8 tzproblem and we find that the overlap 
matrix is positive definite for a total number of at least eight phonon excitations, giving 
180 states in total. This statement is true even for the region of maximum oscillator 
overlap which occurs for vertical transitions from the lower minima in the potential 
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surface to the upper potential sheet (analogous to the Frank-Condon transition in 
molecular spectroscopy). For T@ t, systems, the energy gap corresponding to the 
vertical transition is 3E, as discussed above. In our analysis, we find that these con- 
tributions are much smaller than those of oscillator states of lower energy for every 
value of the coupling constant. Also, the movement away from the unitariness in the 
transformation method produces non-orthogonality between the states and thus should 
create anon-positive-definite classification ofthe overlap. Fortunately thiserror is small, 
as shown by the closeness of the results calculated using the transformation method 
(Dunn eta1 1990) to the numerical calculations of OBrien (1990). This error could be 
removed entirely if procedures could be introduced that completely orthogonalized all 
the states. The only way to do this would be by numerical methods, but this would then 
be little different from other methods. 
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